SHELL IDENTIFICATION AND ANALYSIS

PURPOSE

The purpose of this class is to give members of the Arizona Archaeological Society a working knowledge and ability to recognize and analyze archaeological shell assemblages. The course is intended to focus on a specific site, a series of related sites, or a region of the state. Depending on the project objectives, analysis forms will be developed from the research design. Members may take this class several times to become proficient with shell materials found in Arizona.

Emphasis is placed on identification of specific shell genus and species, their sources and their anatomy. Additionally, a strong focus will be on recognition of worked and un-worked shell and analysis of human modification techniques. Laboratory methods of labeling and storing of shell artifacts will also be presented.

Because some archaeologists believe that most of the shell objects found in other parts of the state were manufactured by the Hohokam, and because the Hohokam seem to have used the greatest variety of species in a greater variety of forms than most other pre-historic Arizona societies, the theme of this syllabus is centered around shell artifacts from Hohokam sites.

PREREQUISITES

The only requirement is the completion of Prehistory of the Southwest I. However, it is strongly recommended that the participant have completed Laboratory Techniques.

COURSE FORMAT

The course is designed to be presented in 60 hours, with 20 hours of lecture (as indicated under the Classroom Instruction Section) and 40 hours of laboratory experience (as indicated under the Laboratory Instruction Section). Laboratory experience could include a research paper, and possible field trips to sites that demonstrate shell processing/and or manufacturing.

LABORATORY STRUCTURE

Depending on available resources, participants may wash, sort and analyze bags of shell materials provided by the host chapter; or, identify, analyze, measure and illustrate shell material and artifacts previously processed in the other laboratory collections.

FIELD TRIPS
Visits to local sites may be arranged at the discretion of the instructor according to the needs and interests of the students and as permitted by landowners and managers.

LABORATORY MATERIALS

A. 10x hand lens
B. Digital or hand drawn caliper 15cm+
C. Scale with accuracy of +/- 1 gram or +/- 0.1 grams
D. Microscope 33.5x stereo zoom
E. Protractor
F. Standard compass
G. 35 mm camera with appropriate lenses, or digital camera
H. Calculator
I. Analysis forms
J. Labeling materials
K. Drawing materials

COURSE OBJECTIVES

At the conclusion of the course, students will

A. Be able to recognize basic shell genera/species that characterize the Hohokam assemblage
B. Be able to separate modified and unmodified shell material
C. Be able to sort shell material based on specific use
D. Be able to identify steps of manufacturing and processing of shell material
E. Be able to carry out necessary laboratory functions: cleaning, labeling, analysis, measurement, drawing, documentation and proper storage techniques

RECOMMENDED TEXTS

B. It is highly recommended that a selection of articles from the bibliography be chosen by the course instructor. This will provide a good representative background of the broad concepts of shell identification and analysis, the Hohokam trade systems, and the significance of Hohokam shell artifact production. A suggested required reading list is marked with asterisks (*) in the bibliography.
C. Shell identification guides chosen from the following list (Vokes 2002):
Marine Guides

Abbott, Robert Tucker

Keen, A. Myra
1971 *Sea Shells of Tropical West America: Marine Mollusks from Baja California to Peru.* 2nd ed. Stanford University Press, Palo Alto.

Morris, Percy A.

Rehder, Harald A.

Freshwater and Terrestrial Mollusca Guides

Abbott, Robert Tucker

Burch, J. B.

Burch, John B., and John L. Tottenham

Clarke, Arthur H.

COURSE OUTLINE – CLASSROOM INSTRUCTION

A. General Theory Overview
 1. The Hohokam as shell artifact manufacturers
2. The "sphere of influence" (Nelson 1991)
3. Hohokam trade systems
 a. Northern Sonora (Brand 1937,1938)
 b. Papagueria and southern edge of the Gila River Valley (Hayden 1972)
 c. Middle and Upper Santa Cruz (Craig 1982)
B. The importance of recognizing unmodified and modified shell found in a site assemblage
C. Examples of source materials from the Gulf of California, Pacific coast, and local freshwater/terrestrial sources
D. Purpose of Decorative Items
 1. Decoration
 2. Wealth
 3. Religious/ceremonial
 4. Status indicators
 5. Family affiliation
E. Terms Involved in Shell Analysis
 1. Axially ribbed
 2. Anterior canal
 3. Horny operculum
 4. Spine
 5. Aperture
 6. Concentric ribbing
 7. Heat-shaped lunale
 8. Lenticular shape
 9. Hinge
 10. Radial structure
 11. Arched hinge plate
 12. Chevron shaped teeth
 13. Height
 14. Crenulated ribbing
 15. Fossa
 16. Operculum
 17. Nacreous
F. Shell Anatomy (Vokes 2002)
 1. Component parts of a univalve (Gastropod/snails)
 a. Spire
 • Apex
 • Penultimate whorl
 • Columella
 b. Body whorl
 • Outer lip aperture
 • Callus/parietal wall
 • Siphonal canal
 2. Component parts of a bivalve (Pelecypod/clams)
 a. Outer shell
 • Umbo
• Beak
• Dorsal/ventral
• Sides
• Cardial rib
• Concentric structure (ribbing)

b. Inner shell
• Cardinal teeth
• Lateral teeth
• Taxadontic teeth
• Muscle scars
• Pallial line

3. Hohokam Shell Genera and Species (mainly Agua Fria River Valley)

a. Marine
• Glycymeris gigantea
• Glycymeris maculata
• Pecten vogdesi
• Spondylus sp.
• Dosinia ponderosa
• Turritella leucostoma
• Cerithium adustum
• Cerithium maculosum
• Cerithidea albonodosa
• Cerithidea mazatlanica
• Columbella sp.
• Oliva melampus
• Oliva spicata
• Olivella alba
• Olivella dama
• Olivella gracilis
• Conus sp.
• Conus brunneus
• Nassarius pogodus
• Nassarius versicolor
• Neritina sp. (Theodorus)
• Theodoxus luleotasciatus
• Haliotis sp.
• Oyster sp.
• Vermicularia sp.
• Strombus sp.

b. Freshwater
• Anodonta califoriensis
• Freshwater snails
G. Evidence for Local Manufacturing
1. Raw materials
2. Broken in processing
3. Wastage – debitage
 a. Large unused pieces
4. Finished products – local style
5. Limited use of local resources
 a. Gulf of California – Rocky Point
 b. Pacific Ocean
6. Specific stone technology
7. Bracelet production techniques

H. Shell Working Technology
1. Cutting and breaking
 a. Indicated better in shell debitage
 • Seen easier in thin shell
 • Cut lines and overlaps
 • Breaks along cut lines (ragged edges)
 • Narrow pointed tool (.5 – 1 mm)
2. Chipping/Grinding/Abrasion
 a. Direct blow by small hammer
 b. Hitting object against an anvil
 c. Highly abrasive fine grain stone
 • Negative – positive grinding
 • Repairing tools for bracelets
 • Umbo treatment
 a) Plain
 b) Round
 c) Square
 d) Perforated
 e) Heart-shaped
3. Engraving/Incising
 a. Same as cutting – decorative treatment
 b. Edge nicking
4. Drilling
 a. Use to delimit cut boundaries
 b. Production of suspension/string holes
 • Biconical and conical
5. Acid retard etching
 a. Rare
 b. Use of weak acid
 c. Modern experiments
 d. Known examples
6. Painting
COURSE OUTLINE – LABORATORY INSTRUCTION

A. Laboratory Analysis
 1. Separation in the field
 2. Assignment of specimen number
 3. Proper field storage techniques
 a. Container
 b. Packing material
 4. Specimen cleaning process
 a. Dry brushing with soft bristle brush
 b. Immersion (if needed) in distilled water
 c. Soft brushing to remove dirt
 d. Allow to air dry
 e. Chemical cleaning
 • only if necessary (rare)
 5. Analysis form
 a. Relationship to research proposal
 b. General data
 • Specimen number
 • Species
 • Artifact cross section
 • Umbo modification
 • Length
 • Width
 • Thickness
 • Inside diameter
 • Artifact identification
 • Comments
 • Drawings
 • Additional data as needed

B. Shell Species Identification
 1. Type collection location
 a. Care in handling
 • Modern field specimens (Baja California)
 a) Similarity to those excavated
 b) Effects of sun on coloring
 b. Size considerations
 2. Illustrations in site reports
 a. Care in regards to species named
 • Changes
 • Incorrect identification
 3. Malocological reports
 4. Experts in the field when possible
 5. Most common marine species (Keen 1958, 1971)
 a. Cerithidea albonodosa (Gould and Carpenter 1857)
 b. Columbella sp.
 c. Conus sp.
 d. Dosina ponderosa (Gray 1838)
e. Glycymeris gigantean (Reeve, 1843)
f. Glycymeris maculate (Broderlip 1832)
g. Laevicardium elatum (Sowerby 1833)
h. Nassarius pogodus (Reeve 1844)
i. Nassarius versicolor (Adams 1852)
j. Neritina luteofasciata (Miller 1879)
k. Olivella alba (Marrat in Sowerby 1871)
l. Olivella dama (Wood 1828)
m. Pecten vogdesi (Arnold 1906)
n. Spondylus sp.
6. Most common fresh water species
 1. Anodonta californiensis (Lea)
 2. Succinea avarca

C. Artifact Description
1. Measurements needed
2. Utilitarian shell
 a. Ground working edges
3. Decorative shell
 a. Beads
 • Location of stringing holes
 • Perforation of the umbo
 • Spine/aperture removal
 • Disc beads
 a) Perforation size
 b) Bead diameter
 c) Profile
 b. Cylindrical beads – time sensitive
 a) Barrel Beads (Olivella sp.)
 b) True cut cylindrical beads
4. Pendants
 a. Whole shell
 b. Cut and carved
 c. Ground
5. Rings
 a. Finger/toe
 • Whole shell
 • Ground
 b. Earrings
6. Tinklers
7. Mosaic pieces
8. Bracelets, armlets, anklets, pendants
 a. Cut and ground
 • Plain
 a) Haury classification system
 b) Umbonal treatment
 • Decorated
 a) Carved
 b) Incised
9. Acid-retard etching
10. Prestige items
 a. Carved-incised bracelets
 b. Pecten vogdesi beads and pendants
 c. Strombus sp. Trumpets
d. Acid-retard etched shells

SHELL LITERATURE REFERENCES (* highly recommended)

Andrews, E. Wyllis, IV

Bequaert, Joseph C., and Walter B. Miller

Bennyhoff, James A., and Richard E. Hughes

Bettison, Cynthia Ann, Roland Shook, Randy Jennings, and Dennis Miller

Bradley, Ronna J.

Brand, Donald D.

Carpenter, Alice H.

Cheatum, Elmer P., and Richard W. Fullington

Colton, Harold Sellers

Craig, Douglas B.

Di Peso, Charles C., John B. Rinaldo, and Gloria J. Fenner

Ericson, Jonathon E., and Timothy G. Baugh, editors

Ezell, Paul*

Ferg, Allen

1980 Shell from Gu Achi. In *Excavations at Gu Achi: A Reappraisal of Hohokam Settlement and Subsistence in the*

1985b The Block 24-East Prehistoric Shell Assemblages. In City of Phoenix Archaeology of the Original Townsite: Block 24-East, edited by J. S. Cable, K. S. Hoffman, D. E. Doyel and

Huckell, Bruce B., and Lisa W. Huckell

Huckell, Lisa W.

Jernigan, E. Wesley*

1979 *Jewelry of the Prehistoric Southwest*. School of American Research, Santa Fe, and University of New Mexico Press, Albuquerque.

Keen, A. Myra*

Kisselburg, Jo Ann E.*

Landye, J. Jerry*

Marmaduke, William S. and Ann V. Howard*

Mathien, Frances Joan*

McGregor, John C.*

McGuire, Randall H.*

McGuire, Randall H. and Ann Valdo Howard*

Minnis, Paul E.
1988 Specialized Production at Casas Grandes, Northwestern Chihuahua. The Kiva 53(2):###. Tucson, Arizona

Nelson, Richard S.

Officer, James E.

Orzech, Sarah
1984 Archaeology on the Half Shell: A Pilot Study on the Effects of Roasting Sea Shells. Ms. on file, Laboratory of Traditional Technology, Department of Anthropology, University of Arizona, Tucson.

Pomeroy, J. Anthony*

Riley, Carroll L.
1977 The Road to Hawikuh: Trade and Trade Routes in Cibola-Zuni during Late Prehistoric and Early Historic Times. The Kiva 41(2)137-159. Tucson, Arizona.

Seymour, Deni Joanne

Shoger, Maurice Dean*
1980 Shell Materials Recovered during Phase I, II, III, and IV of The Vandalism Study Conducted at Casa de los Piedras (AZ:T:7:5 ASU), MS on file at the Arizona Archaeological Society, Phoenix Chapter and Agua Fria Chapter, and the Arizona State Museum, Tucson
Silsbee, Joan M.

Stanislawski, Michael B.
1961 Two Prehistoric Shell Caches from Southern Arizona. The Kiva 27(2) 22-27. Tucson, Arizona

Stone, Tammy, and Michael S. Foster

Tower, D. B.
1945 The Use of Marine Mollusca and Their Value in Reconstructing Prehistoric Trade Routes in the American Southwest. Papers of the Excavator’s Club 2 (3). Cambridge.

Urban, Sharon F.

Vokes, Arthur W.

1986a Shell, In Archaeological Excavations at the West Branch Site, AZ A:16:3 (ASM), by F. Huntington, pp. 229-250.
Institute for American Research Anthropological Papers 5.
Institute for American Research, Tucson.

1999c The Ancient Use of Seashells in Arizona and Beyond. Old Pueblo Archaeology, Issue Number 18, September 1999. Tucson

Vokes, Arthur, J. Homer Thiel, and Susan Hall

Woodward, Arthur